Степенная функция с действительным показателем

Страница 1

Пусть - произвольное вещественное число. Определим общую степенную функцию

Из определения степенной функции следует, что при она представляет собой возрастающую, а при убывающую функцию.

Рассмотрим предельное значение степенной функции при . Докажем, что

Действительно, пусть - любая сходящаяся к нулю справа последовательность значений аргумента . Так как , то из свойств показательной функции вытекает, что при и при . Естественно положить теперь при и считать это выражение неопределенным при .

Докажем непрерывность степенной функции в любой точке положительной бесконечной полупрямой . Для этого достаточно установить, что эта функция непрерывна в каждой точке указанной полупрямой слева и справа. Докажем, например, непрерывность этой функции в точке слева (непрерывность справа доказывается аналогично). При этом ради определённости будем считать . Обратимся к формуле . Пусть - любая сходящаяся слева к последовательность значений аргумента степенной функции, так что . Так как логарифмическая функция непрерывна, то последовательность где , сходится к , причем, все элементы отличны от (в самом деле, поскольку при логарифмическая функция возрастает, то справедливо неравенство ). В силу непрерывности показательной функции последовательность сходится к . Иными словами, последовательность, представляющая собой последовательность значений степенной функции, соответствующую последовательности , сходится к , то есть, к . Непрерывность степенной функции в точке слева доказана. Аналогично доказывается непрерывность этой функции в точке справа. Но непрерывность функции в точке слева и справа означает, что функция непрерывна в этой точке. Отметим, что если , то степенная функция непрерывна также и в точке .

Отметим, что если показатель степенной функции представляет собой рациональное число , где - нечетное целое число, то степенную функцию можно определить на всей числовой оси, полагая для , если и , четное,

Страницы: 1 2


Преемственность работы детского сада со школой
Преемственность между детским садом и школой предполагает ориентацию, направленность работы дошкольного учреждения на требования, предъявляемые в школе и, наоборот: учет учителем достигнутого общего уровня развития дошкольника, сформированного нравственного поведения, волевой, личностной сферы ребенка. Преемственность может рассматривать ...

Многоуровневое обучение математике в классах повышенного педагогического внимания
Сложный контингент учащихся вынуждает педагогов искать неординарные формы и методы преподавания любой дисциплины, втом числе и математики. Среди педагогических находок в первую очередь следует назвать многоуровневое обучение. Суть его состоит в следующем. Вначале производится диагностирование базисных знаний учащихся по тому или иному ра ...

Разделы

Copyright © 2023 - All Rights Reserved - www.proeducator.ru